
CROSSTALK The Journal of Defense Software Engineering 3February 1999

This article describes the
experiences of a team that used
the TSP to produce a software-

intensive product for the U.S. Air Force.
The Ogden Air Logistics Center, Soft-
ware Engineering Division, Hill Air
Force Base, Utah, has a long history of
producing avionics and support software
for the Air Force. The division had pre-
viously been assessed at a Capability
Maturity Model (CMM)® Level 3 and
has just recently been assessed at CMM
Level 5. TaskView, one of the products
they delivered, is a system to help Air
Force pilots produce flight plans. Flight
planning is labor-intensive and time-
consuming; TaskView automates much
of this work. It helps mission planners
produce accurate flight plans with less
labor and in less time than previously
possible. The project was completed
ahead of its original schedule and within
its committed budget. The product is
currently in customer acceptance testing
with no defects reported to date. This
article is the first published report of
project results with the TSP.

Following a brief TSP overview, we
describe the software organization, the
TaskView project, and the team’s experi-
ences in introducing and using the TSP.
Next, we cover the engineers’ reactions
to using this process. We conclude with
a brief summary of the key findings
from the TaskView experience. The

division already had a high-maturity
software process, so it had data available
from prior work. We can thus compare
the performance of the TSP team to
previous projects. Although this article
presents some of the data, we only show
a few of the indicators that are poten-
tially available for TSP projects.

The TSP
Although the concepts and methods for
running integrated teams are well
known, the specific steps often are not
obvious to working engineers and man-
agers. For example, to be effective, teams
need precise goals, clearly stated roles, a
defined engineering process, and a de-
tailed plan for the work. They need a
framework for periodic coordination and
structured methods to review and track
project risks and issues. Team measures
must be defined and recorded, tracking
mechanisms developed, and a reporting
system established.

Although none of these items is
particularly complex or difficult, the
specific actions often are not obvious.

Using the TSP on the TaskView Project
David Webb, Ogden Air Logistics Center, Software Engineering Division

Watts S. Humphrey, Software Engineering Institute

This article reports the first results of using the Team Software Process (TSP)TM on a software-intensive system
project. The TSP was developed by the Software Engineering Institute (SEI) to guide integrated teams in
producing quality systems on their planned schedules and for their committed costs. The TaskView team at
Hill Air Force Base, Utah used the TSP to deliver the product a month ahead of its originally committed date
for nearly the planned costs. Because the engineers’ productivity was 123 percent higher than on their prior
project, they included substantially more function than originally committed. Testing was completed in one-
eighth the normal time, and as of this writing, the customer has reported no acceptance test defects.

The SEI’s work is supported by the Department of
Defense.

Personal Software Process, PSP, Team Software
Process, and TSP are service marks of Carnegie
Mellon University. Capability Maturity Model
and CMM are registered trademarks of Carnegie
Mellon University.

Figure 1. How PSP and TSP provide IPD capabilities.

Before engineers can work effectively in
an integrated team environment, they
need to know precisely what to do. If
they have not done such work before or
do not have a detailed process to guide
them, they will generally defer the new
or unfamiliar items until they know how
to handle them. They then do the tasks
they fully understand. As a result, many
of the actions required for effective
teaming do not get done. Teams can
waste a great deal of time trying to estab-
lish goals, resolving their working rela-
tionships, and figuring out how to do
the work.

How the TSP Works
The TSP defines the steps required to
build and run software-intensive inte-
grated product development (IPD)
teams [1]. First, the engineers are trained
precisely how to do quality work, use a
defined process, and make and use pro-
cess measurements. For engineers to use
these methods on the job, they must
have hands-on training, explanation of
the methods, and experience using them

Software Engineering Technology

4 CROSSTALK The Journal of Defense Software Engineering February 1999

on realistic project-like exercises. This training is provided by
an intensive 120-hour course that teaches the Personal Soft-
ware Process (PSP)SM [2,3,4,5]. Figure 1 shows how the PSP
training and the TSP process provide the capabilities for inte-
grated teamwork.

After acquiring basic process, planning, and quality man-
agement skills, engineers have the prerequisites to use the TSP.
Every project then starts with a three-day TSP launch work-
shop, where engineers develop teamworking practices, establish
goals, select roles, define processes, and make plans. A shorter
two-day relaunch workshop is then repeated at the start of
every major project phase. Because team members work di-
rectly on their project during the launch, these three days are
part of the job and are not a training exercise.

Finally, the TSP provides the mechanisms to maintain an
effective teamworking environment. This is done with struc-
tured weekly team meetings and periodic relaunch workshops.
The team meeting is much like the football huddle: all mem-
bers participate, and they focus on precisely what to do next. If
the plan is working, they follow it. If it is not, they may de-
cide to change it. The team meeting not only maintains ef-
fective team communication but also facilitates precise status
tracking, provides a context for team decision making, and
supports continuous risk tracking and project reporting. As
in football, periodic “huddles” are important; if teams did
not huddle, they would do a lot of running around but not
win many games.

The team relaunch is conducted at every principal project
milestone. It serves to help the team evaluate and rebalance the
project plan, reassess project risks, integrate new team mem-
bers, reassign team roles, and re-emphasize the team’s goals and
charter. At the conclusion of each launch or relaunch, the team
reviews its status, plans with management, and resolves any
issues and problems.

What the TSP Provides
The TSP process provides a set of forms, scripts, and standards
that lead the team through the process steps. Once they are
PSP trained, engineers know how to develop and follow a
defined process, and they understand how to use the pro-
cess measures to consistently produce quality products. The
PSP can be viewed as a language of process. Until engineers
are reasonably fluent in this language, they generally are not
able to follow the process and use its measures. PSP training
provides the engineers the process fluency they need to use
the TSP.

The TSP process also provides the guidance engineers need
to work effectively in a team context. As shown in Figure 2,
this is done during the three-day team launch. By following
the launch process, the team members can quickly determine
their own and everyone else’s responsibilities, and they can
readily track and coordinate their work with their teammates
and other teams.

Because the TSP produces a large volume of data, manag-
ing and tracking the data can become a burden. The SEI has
developed a support tool that helps engineers record and track
TSP data. The initial tool support is in Microsoft Excel for
Windows 95 and Windows NT. The TSP teams that have used
this tool report that it substantially simplifies their data-gather-
ing and reporting tasks. An enhanced tool is under develop-
ment.

Engineering Support
During the launch and relaunch workshops, the team works as
a unit to develop their process, quality, support, and project
plans. These detailed plans identify and schedule the work for
the next phase to the level of 10 task hours or fewer. Thus, the
team members and their management know what tasks are to
be done and when they are to be completed. In one example,
Dave Webb, the TaskView team leader, needed to temporarily
assign one engineer to help another project with a critical
problem. By reviewing the detailed task schedule with the
engineer, he precisely determined the impact of this reassign-
ment and made workload adjustments to ensure that the
project schedule was not affected.

The team as a unit also performs continuous risk manage-
ment. In the launch and periodic relaunches, members do a
complete project risk assessment. All risks are rated for likeli-
hood and impact, and the more important risks are assigned
to individual members for tracking. The assigned team mem-
bers then develop mitigation plans for the immediate priority
risks and monitor and report risk status in the weekly team
meetings.

Figure 2. The TSP launch process.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 5February 1999

The TSP process helps working groups develop into cohe-
sive and effective engineering teams. With defined and agreed-
to goals and a process and plan to meet these goals, team mem-
bers are more likely to submerge their personal problems and
strive for the common objective. Efficiency is enhanced by the
defined process, and communication is maintained by the
weekly meetings of all team members. These meetings take less
than one hour for teams of about 10 members. Team members
review their role activities, planned vs. actual tasks completed,
and risk status. Each member reports personal earned-value
status, any needed team or management actions, and personal
plans for the next period. These weekly meetings permit the
team as a whole to periodically rebalance the workload, resolve
issues, and make decisions.

TSP Status
The TSP process is being developed by the SEI, and it is cur-
rently under test by approximately 10 engineering groups and
several dozen teams. Based on the experience to date, four TSP
versions have been produced. The TSP has been used with
teams as small as two engineers and with groups as large as 17.
Some teams have been composed of software professionals,
and others have also had hardware, systems, test, or other engi-
neering participants. The project categories include mainte-
nance, new product development, and product enhancement.
System types have ranged from components of large commer-
cial data-processing systems to embedded real-time controllers.
TSP projects have covered proprietary product development,
industrial software contracts, and military development and
enhancement work.

Hill Air Force Base
The TaskView project was conducted by the Ogden Air Logis-
tics Center, Technology and Industrial Support Directorate
(TI), Software Engineering Division (TIS) at Hill Air Force

Base, Utah. The TIS vision statement declares that they will
provide “exceptional weapon system software and related hard-
ware solutions and technology adoption expertise to enhance
our nation’s defense.”

TIS is a high-maturity organization with a strong history of
software process improvement. In March 1995, TIS was as-
sessed as a CMM Level 3 organization, and the assessment
conducted in July 1998 rated them at CMM Level 5. This is
the first software organization in the Department of Defense
(DoD) to receive this rating, and it is one of the few Level 5
software groups in the world.

The software products produced by TIS include opera-
tional flight programs for the F-16 Fighting Falcon aircraft,
test program sets for F-16 automated test equipment, mission-
planning software for a variety of aircraft, and avionics test-
station software. TIS is also the home of the Software Technol-
ogy Support Center (STSC), which provides technology
adoption expertise to the DoD, sponsors the annual Software
Technology Conference, and publishes CROSSTALK.

During the summer of 1996, TIS introduced the PSP to a
small group of software engineers. Although the training was
generally well received, use of the PSP in TIS started to decline
as soon as the classes were completed. Soon, none of the engi-
neers who had been instructed in PSP techniques was using
them on the job. When asked why, the reason was almost
unanimous: “PSP is extremely rigorous, and if no one is asking
for my data, it’s easier to do it the old way.”

Although the TIS Software Engineering Process Group
(SEPG) believes that PSP training accelerated CMM improve-
ment work, members were concerned that the PSP methods
were not being used. They therefore asked the SEI how to get
engineers to consistently use PSP practices on the job. Because
the TSP was then being designed to address this exact prob-
lem, the SEI suggested that TIS become involved in TSP pilot
testing. TIS decided to do so, and this project is the result.

The TaskView Project
TIS chose the TaskView project as the TSP pilot. TaskView is a
UNIX-based tool that parses an Air Tasking Order (ATO),
which is a set of battle instructions for all aircraft involved in a
strike, including fighters, bombers, and refuelers. As shown in
Figure 3, it describes the flight plans, aircraft armament, and
specific mission roles and tasks. Once the battle has been
planned, a complex set of computer programs generates an
ASCII text file that contains the ATO information. This ATO
is then delivered electronically to each of the units participat-
ing in the strike.

Currently, the ATO is “broken out” manually— inter-
preted, sorted, and restructured—by the participating groups,
who use hard copies and highlighters to mark their specific
instructions. This is a laborious process that can take several
hours. Once the information has been identified, the data
must then be manually entered into mission-planning software
tools for each unit, which provides ample opportunity for
further mistakes. The TaskView tool parses the ATO and auto-
matically “breaks out” (sorts and structures) the needed infor-

Figure 3. TaskView converts complex ASCII text to tree structures to map
routes.

Using the TSP on the TaskView Project

6 CROSSTALK The Journal of Defense Software Engineering February 1999

mation in a few seconds. Additionally,
TaskView can port data directly to mis-
sion-planning software tools, which
greatly reduce the defects introduced
during manual entry.

An initial prototype version of
TaskView had been developed by an-
other organization, and the TIS contract
was to produce a product from this
prototype, enhance it for a new ATO
format, and port it from the UNIX
environment to a PC Windows NT
operating system.

TIS chose the TaskView project as a
pilot for the TSP for several reasons:
• The team members were already

PSP trained.
• TaskView was a small (under

20,000 lines of code [LOC]), short-
duration (eight months) project
from which results would be imme-
diately apparent.

• The project manager for TaskView
(Dave Webb) was an SEI-certified
PSP instructor.
The TaskView project started a

month before the introduction of TSP.
The team had already been through the
planning process required by TIS, and a
detailed plan already existed before the
first TSP launch. Since the TSP is de-
signed to build on and augment an
organization’s existing process, the
TaskView project could use the TIS
Standard Engineering Process and
tracking tools. When organizations do
not have a fully defined process, the
TSP launch process guides the team in
defining and developing the needed
process elements.

Using the TSP Process
The first TSP launch for the TaskView
project was held at the end of February
1998. During the launch, we reviewed
TSP concepts with the team and guided
them through the project planning and
tracking steps. The team spent about
two and one-half days in this launch
workshop.

Team Goals and Roles
During the project launch, the team
members determined and documented
the project goals. Some were high level,

such as “delight our customers” and “be
an effective pilot project for TSP in the
Air Force and the DoD.” More specific
goals included “provide clean beta ver-
sions of TaskView to [the customer]”
and “meet or exceed our quality plan.”
One important goal was to meet the
customer’s recent request that the
TaskView project be delivered one
month earlier than the original Sept.
30, 1998 commitment date.

Next, team members chose their
personal team roles from among the
TSP basic set: Customer Interface Man-
ager, Design Manager, Implementation
Manager, Planning Manager, Process
Manager, Quality Manager, Support
Manager, and Test Manager. Because of
the limited size of the team, some
members received more than one job.
These roles were assigned so that when
risks or issues arose, there would be a
point of contact already designated and
prepared to handle them. As usual, the
official team leader had already been
designated by management.

Detailed Planning
With the goals and roles determined,
the team refined its existing project
plan. The previously developed
TaskView plan contained about three
dozen work breakdown structure ele-
ments and tasks. During the TSP
launch, the engineers produced a de-
tailed list of more than 180 tasks. Using
standard productivity rates, the team
next estimated the task hours and the
size of each task’s product, usually in
LOC. They also estimated each
engineer’s available task hours for each
week of the project.

Task hours are hours spent working
only on the tasks in the task list. Time
spent in meetings, on the telephone,
using E-mail, or engaged in any other
activity that is not defined in the plan is
not counted toward TSP task hours.
Although these activities are necessary
and are definitely work hours, they are
not tracked as part of the project earned
value. Based on the experiences of other
TSP projects, the TaskView team esti-
mated that in an engineer’s standard
40-hour workweek, 20 hours would be
an aggressive goal for task-related work.

The TSP Earned-Value Tool
TSP tools were then used to turn this
top-down plan into an earned-value
chart with a projected completion date.
On the first run, the team and manage-
ment were delighted to find that the new
completion date projected by the top-
down plan matched perfectly with the
customer requirement for a one-month
schedule acceleration.

Next, the software engineers were
each given a copy of the task list and
asked to estimate their personal work,
using their own line of code and effort
data. Such data are a product of the
PSP course, which every engineer
should complete before starting a TSP
project. The TSP tool was then used to
combine these individual estimates into
a bottom-up estimate, also with earned
value and a projected completion date.
This estimate did not match the sched-
ule requirements or the top-down esti-
mate completed only a few hours earlier
because some engineers were tasked
more heavily than others. Because
project schedules often slip if only one
engineer is overburdened, the TSP
launch process includes a workload-
balancing step.

After workload balancing, the bot-
tom-up schedule matched the top-
down estimate and the customer’s need.
At this point, all engineers had a per-
sonal task and earned-value plan for
which they individually had provided
the estimates.

Risk Assessment and Mitigation
At the next TSP launch meeting, the
TaskView team identified the risks
associated with the project. They listed
these risks in a brainstorming session,
prioritized risk likelihood and impact,
and assigned responsibility for mitiga-
tion and tracking. For example, the risk
that “there will be a day-for-day slip in
schedule if we do not receive the neces-
sary header files by 3 March” was given
a high likelihood and impact and as-
signed to the official team leader.

Fourteen risks were identified in this
initial launch, of which seven were
assigned to the team leader, and the
balance were handled by team mem-

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 7February 1999

bers. The team leader also agreed to share responsibility with
the engineers to track and mitigate the other management-
related risks.

Management Review
The final launch activity was a management review of the
team’s launch results. Normally, such meetings provide the
forum to resolve serious scheduling or resource issues. For
TaskView, however, the management review reaffirmed the
existing project commitments.

Tracking the Work
After the two-and-one-half-day TSP launch, the team started
on the job. Using the PSP, the engineers tracked, in minutes,
the time they spent on each task and process phase, recorded
the defects found at every phase, and measured the sizes of the
products they produced. The data were stored in the engineers’
data tracker and in the TSP tracking tools. Thereafter, the team

met weekly to review earned-value status, goals, risks, issues,
and action items.

Within the next few weeks, it was evident that the team
had a problem. The engineers were not achieving the 20 task
hours per week they had planned. Their earned-value data,
however, showed them to be on or ahead of schedule. From
the data, the team found that there were two offsetting factors:
Tasks had generally been overestimated, and it was much
harder to achieve 20 task hours per week than had been ex-
pected. Even though the schedule impact to date had been
minimal, this new understanding helped the team make better
plans, and it showed where to focus to improve performance.

The Team Relaunch
In May 1998, we guided the TaskView team in assessing their
progress and conducting a relaunch. The relaunch was neces-
sary because the project was moving into its second phase, and
the engineers felt a new plan was needed. This new plan would
reflect lessons learned from the prior phase, more realistically
address task hours, and include new tasks.

Although relaunch workshops normally take two days, this
team was able to accomplish it in only one day. During this
period, they replanned the project, refined their size and time
estimates, adjusted their schedule to reflect 15 weekly task
hours per engineer, and reassessed risks. Based on the cost,
schedule, risk, and quality data, the overall project was judged
to be ahead of plan. Because tasks had been generally accom-
plished with less effort than originally planned, some functions
were completed early, whereas one important function planned
for Phase 1 had slipped to Phase 2.

Because of the project’s progress, TaskView could either
return some money to the customer or add new functionality.
The customer interface manager worked with the customer
and found that new functionality was more important than
cost reduction. Management then agreed to add more tasks
and more people to the project. These new functions caused a
modest schedule delay, so the customer interface manager
reviewed the new functionality and schedule with the customer
for approval. Since the planned delivery was still months away,
the customer decided to accept the small schedule change in
order to get the added functions.

Project Results
To determine the benefits of the TSP, TIS compared the
TaskView pilot with similar projects that followed the
organization’s standard process. The project manager and the
software engineers were also asked how the TSP had helped or
hindered their personal work. Because TIS projects already
routinely meet schedules, commitment performance was not
an important factor in the analysis.

Estimating Accuracy
Use of the TSP was found to substantially improve size and
effort estimating accuracy. During the first launch, TaskView
was estimated to be 14,065 LOC. By the second launch, with
the new functions, the total estimated size grew to 19,105

Table 1. TaskView estimated vs. actual LOC. *Note that underestimates are
positive, and overestimates are negative.

rebmuNeludoM
dnaweNdetamitsE

COLdegnahC
dnaweNlautcA

COLdegnahC
*rorrEtnecreP

1 005,1 656,1 %04.01

2 005,1 053,1 %00.01-

3 005 814 %04.61-

4 000,3 525,4 %38.05

5 000,1 379 %07.2-

6 005 760,1 %04.311

7 005 0 %00.001-

8 001,1 773,3 %00.702

9 005,1 848 %74.34-

01 005 659 %02.19

11 005,1 494,1 %04.0-

21 9 4 %65.55-

31 005 356 %06.03

41 desunu desunu desunu

51 005 569 %00.39

61 771,1 379,2 %95.251

71 918 1311 %01.83

81 000,3 683,4 %02.64

latoT 501,91 677,62 %51.04

Using the TSP on the TaskView Project

8 CROSSTALK The Journal of Defense Software Engineering February 1999

LOC. When the TaskView project was
completed, the final new and changed
LOC for the project was 26,776, an
underestimate of 40 percent. When the
9,455 LOC of added function were
subtracted, the team’s original 14,065
LOC size estimate had an error of 23
percent.

Table 1 shows the size estimates the
engineers made during the second TSP
launch. Module 7 took no new and
changed code because the engineer re-
used an existing routine. Although some
individual estimates were reasonably
close, there was considerable variation.
By using a sound statistically based
method and their personal historical
data, however, the engineers were able to
make balanced estimates. This meant
that, on average, they were as likely to
estimate high as low. Because the errors
in the individual estimates tended to
compensate, the overall estimate was
much more accurate than were the indi-
vidual estimates. Team members be-
lieved that their large personal estimat-
ing errors were largely due to the lack of
historical data for this kind of project.
Future project estimates will benefit
from the data gathered during this
project and should be more accurate.

The TaskView effort estimates were
originally made before the introduction
of the TSP. At the first launch, the ef-
fort was again estimated to determine if
the costs were appropriate and if the
load was properly balanced among the
engineers. By the second launch, it was

obvious that effort had been overesti-
mated; the project was able to meet
earned-value goals with fewer task
hours than had originally been ex-
pected. After including the customer-
requested new functionality, the final
delivery date was only two days later
than the accelerated schedule, and the
cost error was negligible.

Productivity
The TIS software process database con-
tains the average productivity in LOC
per man-hour for this team’s prior
project, and the average productivity for
every project that used the TIS organiza-
tional process. Although the exact num-
bers are proprietary, the TaskView
project increased productivity to 16
percent above the TIS average. These
particular engineers increased their pro-
ductivity to 123 percent above their
previous project, or more than two
times. Data on the relative productivity
in LOC per programmer-hour for
TaskView, the team’s prior project, and
the average of all TIS projects are shown
in Figure 4. The TIS average is shown as
100 and TaskView as 116.

Productivity figures are impacted by
many factors. Because TaskView and the
team’s prior project involved different
languages, application domains, and
development environments, the produc-
tivity improvement cannot be consid-
ered a measure of the TSP. The results
do, however, suggest that the TSP im-
proves productivity.

Quality Improvement
As shown in Table 2, the standard TIS
process includes inspections (peer re-
views) of all work products. The TSP
adds a set of personal design and code

reviews. One important question was
whether the time spent doing these
personal reviews was worthwhile. The
TIS process typically removes about 13
defects for every thousand lines of code
(KLOC) during design and code inspec-
tions. The rest must be found in test or
by the user. With TSP, the TaskView
project increased the yield of early defect
removal by more than 60 percent by
removing 21 defects per KLOC in both
the reviews and the inspections. The
benefits of this early attention to quality
are apparent from the results of the later
test phases.

Assuming the engineering process
has rigorous testing criteria, an indicator
of product and process quality is the
time spent running tests. Generally, the
fewer defects there are to be found, the
less time is spent in test and the higher is
the resulting product quality. The TIS
process has three test phases, all with
rigorous criteria, that must be completed
before the product is passed to an exter-
nal agency for operational testing: func-
tional test, candidate evaluation, and
system test. These phases are then fol-
lowed by the customer’s operational test
and evaluation and then by operational
usage. Typical TIS projects require 22
percent of the project schedule (in days)
to perform the final two TIS test
phases. The TaskView project, using
TSP, sharply reduced this percentage to
2.7 percent. This is a schedule savings
of nearly 20 percent. Only one high-
priority defect was found in these last
two test phases.

Data from the completed TaskView
project show that the defect density at
the functional testing phase was close to
that normally achieved by other TIS
projects only after all engineering testing

PhasePhasePhasePhasePhase TIT IT IT IT ISSSSS TSTSTSTSTSPPPPP

Requirements inspection X X
High-level design inspection X X
Detailed design personal review X
Detailed design inspection X X
Personal code review X
Compile X X
Code inspection X X
Functional test X X
Candidate evaluation (CPT&E) X X
System test (ERT) X X
Operational test and evaluation

(acceptance test) X X
Operational usage (external) X X

Table 2. TIS and TSP defect-removal process steps.

TTTTTaskViewaskViewaskViewaskViewaskView PrPrPrPrProject 1oject 1oject 1oject 1oject 1 PrPrPrPrProject 2oject 2oject 2oject 2oject 2 PrPrPrPrProject 3oject 3oject 3oject 3oject 3

Program Size – LOC 26,776 67,291 7,955 86,543
CPT&E Test Days 4 22 10 33
ERT (System Test) Days 2 41 13 59
Total Test Days 6 63 23 92
Test Days/KLOC 0.22 0.94 2.89 1.06
System Test Defects/KLOC 0.52 2.21 4.78 2.66
Acceptance Test Defects/KLOC 0* N/A 1.89 0.07

Table 3. TaskView testing time. *Acceptance test is continuing but no defects have been reported to date.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 9February 1999

phases have been completed. In TaskView, to find only one
high-priority defect in the TaskView product during system
and operational testing is unprecedented for any TIS project.

Because of the improved quality from the TSP process,
TaskView testing time was sharply reduced, as shown in Table
3. Here, the test data for the TaskView project are compared
with three comparable prior projects. Although one could
reduce testing time by running incomplete tests, the fact that
the customer has so far reported no defects during acceptance
test suggests that this was not the case. By using the TSP,
TaskView not only produced a higher-quality product, it also
took only one-eighth the testing time normally required for
similar projects.

Qualitative Results
A critical question in introducing any new software engineer-
ing tool or technology is whether the engineers will use it. If
the engineers do not like a tool or method, they will probably
not use it, regardless of its effectiveness. To assess this issue, we
privately asked all the TSP team members four questions:
• What do you believe are the advantages of the TSP?
• What do you believe are the disadvantages of the TSP?
• What about the TSP would you change?
• What about TSP would you keep the same?

Without knowing their teammates’ responses, every team
member said the TSP helped them form a closer, more effec-
tive team than any they had worked on before and that they
would like to continue to use it. One team member said, “The
TSP creates more group involvement. Everyone feels like
they’re more part of a group instead of a cog in a wheel. It
forces team coordination to talk about and solve problems—
there’s no pigeonholing.” Another team member said, “This
really feels like a tight team. I was on the same team for a year
[while working on another project] and didn’t know the team
members as well as I do now.”

Another qualitative advantage expressed by multiple team
members was increased effectiveness in project planning and
tracking. “TSP gives you better insight into your current
state,” said one software engineer. “It provides better focus for
the software developer on tasks to be done.” Another TaskView
team member summed up the planning and tracking benefits

of TSP in this way: “Measuring progress helps generate
progress.”

The principal weakness the TaskView team mentioned was
the need for better TSP tool support. Several members said
that the tracking and earned-value support needed to be im-
proved, and another suggested more automated data gathering
and analysis. Work on TSP tool improvement has already
begun at the SEI, and a newer, better version of the planning
and tracking tool will soon be available.

The lead software engineer gave perhaps the best testimo-
nial to the qualitative results of the TSP. When asked what he
would not change about the TSP, he said, “I’ve seen a lot of
benefits [from the TSP]. I’d like to see us continue to use it.”

Conclusions
One of the fears many have about process improvement initia-
tives like the TSP is that the cost of doing extensive planning,
personal reviews, and data gathering will increase the overall
cost of the project. It is evident from the TaskView data, how-
ever, that the time spent performing these activities is more
than made up by improved planning accuracy and reduced test
time. As Philip Crosby once noted, “Quality is free.” [6]

Perhaps the greatest change with the TSP is in the relation-
ship between management and the engineers. To be most
effective, engineers must be motivated and energetic; they need
to be creative and concerned about the quality of their prod-
ucts, and they should enjoy their work and be personally com-
mitted to its success. This can only be achieved if management
trusts the engineers to work effectively and the engineers trust
their management to guide and support them.

Although trust is an essential element of effective team-
work, it must rest on more than mere faith. The engineers
must follow appropriate methods and consistently strive for
quality results. They must report on their progress and rapidly
expose risks and problems. Similarly, management must recog-
nize that the engineers generally know more about their de-
tailed work than the managers, and they must rationally debate
cost and schedule issues. Management also needs to ensure that
the engineers consistently follow disciplined methods and that
the teams do not develop interpersonal problems.

The TSP is designed to address these issues and show engi-
neers and managers how to establish an environment in which
effective teamwork is normal and natural. Because this will
often require substantial attitude changes for the engineers and
the managers, to introduce the TSP is a non-trivial step. As the
TaskView data show, however, the TSP can produce extraordi-
nary results. ◆

Acknowledgments
Being a leader and a coach for the TaskView team has been a
rewarding experience for each of us. It would not, however,
have been as rewarding or satisfying without a dedicated and
hard-working team. For their support and cooperation, we
thank Pattie Adkins, Keith Gregersen, Neil Hilton, Craig
Jeske, Ken Raisor, Mark Riter, and Capt. David Tuma. We also
enjoyed excellent support from Tresa Butler for configuration

Figure 4. Relative productivity.

Using the TSP on the TaskView Project

10 CROSSTALK The Journal of Defense Software Engineering February 1999

management, Pat Cosgriff for SEPG
support, and Jim Van Buren of the
STSC for PSP consultation.

For quality engineering work, consis-
tent and informed management leader-
ship is essential. For their trust in us and
their willingness to support us in pio-
neering the early use of TSP in practice,
we thank Dan Wynn, Robert Deru,
Don Thomas, LaMar Nybo, and Eldon
Jensen. Lt. Col. Jacob Thorn, the
TaskView program manager at Eglin Air
Force Base, Fla., also supported our
process improvement initiatives. His
dedication to quality and informed
oversight made the job possible.

We also thank those who reviewed
this article. Their comments and sugges-
tions were a great help. Our particular
thanks to Rushby Craig, Walter
Donohoo, Linda Gates, John
Goodenough, and Bill Peterson. Finally,
the professional help and guidance of the
CROSSTALK staff have, as always, been a
great help.

About the Authors
David Webb has a
bachelor’s degree in
electrical and computer
engineering from
Brigham Young Univer-
sity. He has worked for
TIS for more than 11

years as a software engineer. Six of those
years he spent as an F-16 Operational
Flight Program software test engineer and
system design engineer, three years as a
member of the TIS SEPG, and two years

as a technical program manager for TIS
mission-planning software. He has partici-
pated in three CMM-Based Appraisals for
Internal Process Improvement, including
TIS’s 1998 Level 5 assessment. He has also
been certified by the SEI as a PSP course
instructor.

OO-ALC/TISHD
6137 Wardleigh Road
Hill Air Force Base, UT 84056
Voice: 801-775-2916 DSN 775-2916
E-mail: webbda@software.hill.af.mil

Watts S. Humphrey is a
fellow at the SEI at
Carnegie Mellon Uni-
versity, which he joined
in 1986. At the SEI, he
established the Process
Program, led initial
development of the

CMM, introduced the concepts of Soft-
ware Process Assessment and Software
Capability Evaluation, and most recently,
the PSP and TSP. Prior to joining the SEI,
he spent 27 years with IBM in various
technical executive positions, including
management of all IBM commercial soft-
ware development and director of pro-
gramming quality and process. He has a
master’s degree in physics from the Illinois
Institute of Technology and in business
administration from the University of
Chicago. He is the 1993 recipient of the
American Institute of Aeronautics and
Astronautics Software Engineering Award
and an honorary doctorate in software
engineering from Embry Riddle Aeronau-
tical University in 1998. His most recent
books include Managing the Software

Process (1989), A Discipline for Software
Engineering (1995), Managing Technical
People (1996), and Introduction to the
Personal Software Process (1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References
1. Humphrey, Watts S., “Three Dimen-

sions of Process Improvement, Part III:
The Team Process,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, April 1998, pp. 14-17.

2. Ferguson, Pat, Watts S. Humphrey,
Soheil Khajenoori, Susan Macke, and
Annette Matvya, “Introducing the Per-
sonal Software Process: Three Industry
Case Studies,” IEEE Computer, May
1997, pp. 24-31.

3. Humphrey, Watts S., A Discipline for
Software Engineering, Reading, Mass.,
Addison-Wesley, 1995.

4. Humphrey, Watts S., “Using a Defined
and Measured Personal Software Pro-
cess,” IEEE Software, May 1996.

5. Humphrey, Watts S., “Three Dimen-
sions of Process Improvement, Part II:
The Personal Process,” CROSSTALK, Soft-
ware Technology Support Center, Hill
Air Force Base, Utah, March 1998, pp.
13-15.

6. Crosby, Philip B., Quality Is Free: The Art
of Making Quality Certain, McGraw-
Hill, New York, 1979.

as part of the employees’ routine infor-
mation flow. In addition to providing
the infrastructure, organizations have to
invest in hiring smart people and pro-
viding incentives for sharing informa-
tion, then provide enough unstructured
time to let people talk face to face. Such
an environment will allow organiza-
tions to capitalize on their constella-
tions of communities of practice.

People who appreciate the need for
software knowledge management and
who have the capacity to inspire or take
the lead in providing the guidance and
resources necessary to share informa-
tion will continue to be invaluable.
They can help any organization capital-
ize on opportunities by facilitating the
enablers that are vital to our software
community of practice. ◆

Notes
1. http://www.sei.cmu.edu
2. http://seir.sei.cmu.edu
3. http://www.stsc.hill.af.mil
4. http://esip.hill.af.mil
5. http://www.dacs.dtic.mil
6. http://www.spmn.com
7. http://www.deskbook.osd.mil
8. http://www.stc-online.org
9. http://www.sei.cmu.edu/products/

events
10. http://www.sei.cmu.edu/cmm/cmms/

cmms.integration.html

COMMUNITY, from page 2

Software Engineering Technology

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

